
2020-11-28

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Counting sort

2
Counting sort

Outline

• In this lesson, we will:

– Describe a different approach to sorting an array:

• Counting the number of the different values

– Consider two implementations

– Compare and contrast this counting sort with previous sorting
algorithms

3
Counting sort

Sorting coins

• Suppose you have sequence of coins and you’d like to sort them

– Using insertion sort should seem to be unnecessary

– Much easier to just count the number of pennies, nickels,
dimes, quarters, 50-cent pieces, loonies, and toonies

4
Counting sort

Sorting coins

• Why is this faster than sorting the same number of integers?

64 69 41 74 41 73 39 1 2 39 76 22 79 71 79 62 38 82 0 25 20 9

– The number of possible values is much more limited

– There are likely to be duplicates

• Suppose we had these same conditions

– For example, given an array of integers between 0 and n – 1

• How could we create a sorted array of a limited number of integers
not using insertion or selection sort?

1 2

3 4

2020-11-28

2

5
Counting sort

Sorting coins

• Going back to our coin example,
here’s probably the wrong way to go about it:

– Find how many pennies there are

– Next, find how many nickels there are, etc.

• Instead, the more reasonable approach would be to keep a tally of
how many pennies, nickels, dimes, etc. there are and then walk
through the list ticking off how many we have seen of each:

Pennies 50-cent pieces

Nickels Loonies

Dimes Toonies

Quarters

✓

✓

✓

✓

✓

✓
✓

✓✓

✓

✓

✓ ✓✓

✓ ✓

✓

✓

✓

✓✓

✓

6
Counting sort

Sorting coins

• This algorithm is quite straight-forward,
and does exactly what we did with the coins:

– Create a counting array of capacity n and initialize the entries to 0

– Go through the array to be sorted, and just increment the
corresponding entry in your counting array

7
Counting sort

Counting the number of appearances

• Thus, suppose we are asked to sort this array

– Suppose we are made aware that the entries in this array do not
exceed the value 9:

– Also, at this point, we no longer need to know the capacity of the
original array: the capacity equals the sum of our tally

3 + 2 + 2 + 4 + 2 + 2 + 3 + 0 + 4 + 2 = 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 1 6 0 5 0 3 4 3 0 9 4 8 9 3 8 1 2 2 8 3 5 6 8

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 01211 12 1 123 12 1 23 22 12 34 2 3 4

8
Counting sort

Counting the number of appearances

• Thus, we need to implement this algorithm:

– Create a counting array of capacity n and initialize the entries to 0

– Go through the array to be sorted, and just increment the
corresponding entry in your counting array

void counting_sort(unsigned int array[],

std::size_t const capacity,

unsigned int const max_value) {

unsigned int counting_array[max_value + 1]{};

for (std::size_t k{0}; k < capacity; ++k) {

++counting_array[];

}

// Now re-populate the array with the entries in order

}

array[k]

5 6

7 8

2020-11-28

3

9
Counting sort

Filling in the original array

• Thus, given these two arrays, we now must create a sorted array

• Previous, we had to swap entries

– However, now, we proceed as follows:

• Fill the first three entries with 0s

• Fill the next two with 1s

• Fill the next two with 2s

• Fill the next four with 3s

and so on, until the array is full

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 1 6 0 5 0 3 4 3 0 9 4 8 9 3 8 1 2 2 8 3 5 6 8

0 1 2 3 4 5 6 7 8 9

3 2 2 4 2 2 3 0 4 2

3 3 3 30 0 0 1 1 2 2 5 54 4 6 6 6 8 8 8 8 9 9

10
Counting sort

Filling in the original array

• Take a minute to try to design an algorithm to repopulate the array
with the entries in order

void counting_sort(unsigned int array[],
std::size_t const capacity,
unsigned int const max_value) {

unsigned int counting_array[max_value + 1]{};

for (std::size_t k{0}; k < capacity; ++k) {
++counting_array[];

}

// Now re-populate the array with the entries in order
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 1 6 0 5 0 3 4 3 0 9 4 8 9 3 8 1 2 2 8 3 5 6 8

0 1 2 3 4 5 6 7 8 9

3 2 2 4 2 2 3 0 4 2

11
Counting sort

Filling in the original array

• Finishing our algorithm:
void counting_sort(unsigned int array[],

std::size_t const capacity,

unsigned int const max_value) {

unsigned int counting_array[max_value + 1]{};

for (std::size_t k{0}; k < capacity; ++k) {

++counting_array[array[k]];

}

std::size_t posn{0};

for (std::size_t k{0}; k <= max_value; ++k) {

for (std::size_t count{0}; count < counting_array[k]; ++count) {

array[] = k;

++posn;

}

}

assert(posn == capacity);

}

posn

0 1 2 3 4 5 6 7 8 9

3 2 2 4 2 2 3 0 4 2

12
Counting sort

Filling in the original array

• Here is another approach:

– Create a second array, with one extra entry

– Let the kth entry of this second array be the sum of the entries
from 0 to k - 1 in the counting array

unsigned int cumulative_array[max_value + 2]{};

for (std::size_t k{1}; k < max_value + 2; ++k) {

cumulative_array[k] = cumulative_array[k - 1] + counting_array[k- 1];

}

assert(cumulative_array[max_value + 1] == capacity);

0 1 2 3 4 5 6 7 8 9

3 2 2 4 2 2 3 0 4 2

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10

0 3 5 7 11 13 15 18 18 22 24

9 10

11 12

2020-11-28

4

13
Counting sort

Filling in the original array

• How do we use this new cumulative array?

– This says:

• Indices 0 to 2 should be populated with 0

• Indices 3 to 4 should be populated with 1

• Indices 5 to 6 should be poplated with 2

• Indices 7 through 10 should be populated with 3

– Note that indices 18 through 17 should be populated with 7

0 1 2 3 4 5 6 7 8 9 10

0 3 5 7 11 13 15 18 18 22 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 1 6 0 5 0 3 4 3 0 9 4 8 9 3 8 1 2 2 8 3 5 6 83 3 3 30 0 0 1 1 2 2 5 54 4 6 6 6 8 8 8 8 9 9

14
Counting sort

Counting the number of appearances
void counting_sort(unsigned int array[],

std::size_t const capacity,

unsigned int const max_value) {

unsigned int counting_array[max_value + 1]{};

for (std::size_t k{0}; k < capacity; ++k) {

++counting_array[array[k]];

}

unsigned int cumulative_array[max_value + 2]{};

for (std::size_t k{1}; k < max_value + 2; ++k) {

cumulative_array[k] = cumulative_array[k - 1] + counting_array[k- 1];

}

assert(cumulative_array[max_value + 1] == capacity);

for (std::size_t value{0}; value <= max_value; ++value) {

for (std::size_t k{ cumulative_array[value] };

k < cumulative_array[value + 1]; ++k) {

array[k] = value;

}

}

}

15
Counting sort

Why two approaches?

• In a sense, the first approach is superior,
as it doesn’t require a second intermediate array

– The goal here, however, is to demonstrate there are different
algorithms, and you may come across a situation where instead of
the counting array, you only have the cumulative array

16
Counting sort

How much faster is counting sort?

• The answer is, of course, it depends

– For example, which is likely faster?

insertion_sort(array, 10);

counting_sort(array, 10, 1000000);

– How about now?

insertion_sort(array, 1000000);

counting_sort(array, 1000000, 10);

• In your course on algorithms and data structures,
you will learn about asymptotic and algorithm analysis

– You may have already seen “big-O” notation in your calculus course

13 14

15 16

2020-11-28

5

17
Counting sort

One fundamental difference

• Up to this point, you have been exposed to:

– Insertion sort

– Selection sort

– You may also recall the discussion on merge sort

• What is the fundamental difference between these sorting
algorithms and this sorting algorithm?

– In these first three, we compared values in the array:
void insert(double array[], std::size_t capacity) {

double value{ array[capacity - 1] };

std::size_t k{ capacity - 1 };

for (; array[k - 1] > value; --k) {

array[k] = array[k – 1];

}

array[k] = value;

}

– This counting sort algorithm never compares entries to each other

18
Counting sort

Summary

• Following this presentation, you now:

– Understand the idea behind a counting sort

– Have seen two different implementations

• The first puts the appropriate number of each value into the array

• The second used a cumulative array to determine what goes where

– Understand that there are circumstances where this algorithm will
be faster than insertion sort, and other circumstances where it will
be slower

– Are aware that this algorithm does not compare the relative values
of entries in the array, we simply count what is there

19
Counting sort

References

[1] Wikipedia,

https://en.wikipedia.org/wiki/Counting_sort

[2] Dictionary of Algorithms and Data Structures (DADS)

https://xlinux.nist.gov/dads/HTML/countingsort.html

20
Counting sort

Acknowledgments

None so far.

17 18

19 20

2020-11-28

6

21
Counting sort

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

22
Counting sort

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

21 22

